Skip to main content

1:72 U-Boot Repair

.
Trying to fix the ballast tank isues, I attempted a 'surgery'.

A hole in the ballast tank was made to put some bulkheads in, see the photos:


Hole shape marked. Had to go through 6-8 layers of paint to reach the metal!


After cutting it. Notice the existing bafles, wich were there to prevent the tank from deforming under presure, but do not prevent water to move around.


The inside, closer. You can see steel powder from the cut.

Everything was painted with minium /red lead paint. Had been 2 years closed, not smelling good. Paint was removed using a metal brush, with a mask as I don´t think swallowing minium powder is good for health.


Paint almost completely removed and 3d printed bulkheads trimed to fit:


Now we have four independent compartments.





The bulkheads will be epoxy glued to the inside of the tank, and then everything will be painted.

Hole will be closed gluing another steel sheet to the underside of the tank. I am not really sure if epoxy will cope well with 4 atm, but I prefer that to welding, as I don't want to heat everything up. Lets see how it goes.

Comments

Popular posts from this blog

Split-ring compound epicyclic/planetary gearboxes

A while ago, I came across this strange thing called ‘split-ring compound epicyclic/planetary gearboxes’. They seemed really nice, extremely high gear ratios in compact, stackable modules. But the already existing models were not enough. I wanted to be able to design my own, and due to the lack of information on the subject, I had to do a little research and some math. Here is most of what I would have liked to find on the first place: 1. What is a planetary gearbox? Planetary gearboxes, as their name says, resemble planets orbiting around a “sun”. They are composed of a sun gear, in the center, two or more planet gears around it -and often fitted to a carrier- and a ring/annulus gear on the outside. As an image is worth a thousand words: Source Their main feature is a high reduction ratio in a small, flat space, and also, it is easy to couple the output of one gearbox to the input of another one, getting a two or more stage gearbox with such a high reduction ratio. But where is the i

Arduino Based Electronic Load

I have had some problems with my "lab power supply" and I wanted to build another one, so I thought a DC load may be handy to have around. The design is based around Dave Jone's design shown in this video , but with a couple more features, including:     -Arduino controlled.     -Voltage, current, power and temperature monitoring.     -CC and external in hardware modes and CP, Cr software modes.     -Over temperature, over power and over current protection (software) It can handle around 4 amps and 24 volts, limited by the mosfet. It's divided in two main boards. * UI Board: houses the 7 segment displays (I know one is bigger that the others, just what I had aroud...) and the keyboard. The display is multiplexed using a shift register. In addition, the four buttons are read taking advantage of the transistors switching the comon anodes, requiring only one additional pin. Only the first digit had decimal point, so one led was added for the second dig

Linear lab power supply

This is a dual channel linear lab power supply I have spent recent months building, much thanks to the help received in  this EEVBlog thread . All design files are available in this  GitHub repository . I will attempt to go over the general progress of the project, but please refer to the said thread for more information. Design requirements: Dual isolated channels. Adjustable voltage and current  30 V , 500 mA per channel. Digital voltage and current displays. Build stages: First, the case was made out of a wooden board and 3d printed front and back panels. Heatsinks were taken from old computers. One side of a 2x 10Vac and a 15 Vac transformer power each channel, plus a 12 Vac smaller transformer for the displays, fan and microcontroller. Ac voltages are rectified and filtered on a separate board. Here are some photos of the early development, initial circuit was based on the one found  here . Then came perfboard prototypes, testing and throubleshooting: